COMMITTENTE:

PROGETTAZIONE:

CUP J31H03000180008

DIREZIONE TECNICA U.O. GEOLOGIA TECNICA DELL'AMBIENTE E DEL TERRITORIO

PROGETTO DI FATTIBILITA' TECNICO ECONOMICA DI 2[^] FASE

NPP 0258 - GRONDA MERCI DI ROMA

GRONDA MERCI DI ROMA	CINTURA	NORD
-----------------------------	---------	------

INDAGINI GEOGNOSTICHE: INDAGINI GEOFISICHE

								SCALA:
COMN	IESSA LOTTO FAS	E ENTE	TIPO DOC	. OPERA/	DISCIPLIN	A PROC	GR. RE	V.
NR4E 00 R 69 IG GE0005 001 A								
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Rev. A	Descrizione Emissione esecutiva	Redatto GIA Consulting	Data	Verificato A. Salvagnini	Data	Approvato T. Padretti	Data Luglio/21	Autorizzato Data M. Comedini
Rev. A	Descrizione Emissione esecutiva	Redatto GIA Consulting	Data	Verificato A. Salvagnini	Data	Approvato T. Padietti	Data Luglio/21	Autorizzato Data M. Comedini H. Comedini H. Comedini H. Comedini H. Comedini H. Comedini H. Comedini
Rev. A	Descrizione Emissione esecutiva	Redatto GIA Consulting	Data	Verificato A. Salvagnini	Data	Approvato T. Padletti	Data Luglio/21	Autorizzato Data M. Comedini H. Comedini H
Rev. A	Descrizione Emissione esecutiva	Redatto GIA Consulting	Data	Verificato A. Salvagnini	Data	Approvato T. Padletti	Data Luglio/21	Autorizzato Data M. Comedini H. Comedini H
Rev. A	Descrizione Emissione esecutiva	Redatto GIA Consulting	Data	Verificato A. Salvagnini	Data	Approvato T. Padetti	Data Luglio/21	Autorizzato Data M. Comedini H. Comedini H

GRUPPO FERRO	TALFERR VIE DELLO STATO ITALIANE							
ESEC	ESECUZIONE DI INDAGINI GEOFISICHE PER IL PTFE GRONDA MERCI DI ROMA – CHIUSURA DELL'ANELLO NORD							
	il R.U.P dott. A. Salvagnini							
	REPORT INDAGINI GEOFISICHE							
		R	OMA NORE)				
G	CODICE PROGE	TTO 2 2 1	DATA REVIS 04/02/2021 0			IONE 1	PAGINE 80	
		Gr	uppo di Lavoi	°0				
Dott. Geo	ol. Enzo De Luzio)	Geofisico Senior					
Dott. Geo	ol. Antonio Fonta	na	Geologo Junior					
Dott. Geo	ol. Angela Caccia		Geologo Junior					
rev.	descri	zione	data	redatto		1	verificato	
1	Emiss	sione	04/02/2021	Geol. Antonio F	ontana	Ph Salvat	n.D. Geol. Fore Costabile	
2				Geol. Enzo De	Luzio			
3				Geol. Angela C	Caccia			
4								

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma

Sommario

PF	REMESSA	3
1.	METODOLOGIE GEOFISICHE IMPIEGATE	4
	1.1 Indagine MASW	6
	1.1.1 Strumentazione utilizzata e tecniche operative	8
	1.1.2 Elaborazione dei dati	9
	1.2 Indagine HVSR	. 10
	1.2.1 Strumentazione utilizzata ed elaborazione dei dati	. 11
	1.3 Indagine DOWN HOLE	. 12
	1.3.1 Strumentazione utilizzata e tecniche operative	. 14
	1.3.2 Elaborazione dei dati	. 16
2.	INDAGINI GEOFISICHE IN SITO	. 17
	2.1 SITO 1	. 17
	2.1.1 MASW 1	. 17
	2.1.2 HVSR 1	. 22
	2.1.3 DOWNHOLE S1	. 25
	2.2 SITO 2	. 30
	2.2.1 MASW 2	. 30
	2.2.2 HVSR 2	. 35
	DOWNHOLE S6	. 38
	2.3 SITO 3	. 43
	2.3.1 MASW 3	. 43
	2.3.2 HVSR 3	. 48
	2.4 SITO 4	. 51
	2.4.1 MASW 4	. 51
	2.4.2 HVSR 4	. 56
	2.5 SITO 5	. 59
	2.5.1 MASW 5	. 59
	2.5.2 HVSR 5	. 64
	2.5.3 DOWNHOLE S7	. 67
	2.6 SITO 6	. 72
	2.6.1 DOWNHOLE S11	. 72
C	ONCLUSIONI	. 77

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma

PREMESSA

A seguito dell'affidamento di incarichi professionali, della Direzione Tecnica U.O. Geologia Tecnica dell'Ambiente e del Territorio di ITALFERR, per l'espletamento delle attività di "*Esecuzione campagna indagini geognostiche per il PFTE Gronda merci di Roma-chiusura dell'anello Nord: indagini geofisiche*" con atto contrattuale: n. ordine 100040196 del 04/01/2021 di attivazione su A.Q. n. 200001348, la G.I.A. Consulting ha eseguito nell'area in oggetto il seguente piano d'indagine:

- ✓ n. 5 rilievi sismici per onde superficiali di tipo attivo MASW. Lo stendimento, costituito da n. 24 geofoni, è finalizzato alla ricostruzione del profilo di velocità Vs per la determinazione del parametro Vs_{eq} e la definizione della categoria sismica dei suoli di fondazione ai sensi delle NTC 2018;
- n. 5 registrazione di prove sismiche passiva di tipo HVSR per la definizione della frequenza di risonanza del sito in funzione dei significativi contrasti di impedenza sismica;
- n. 4 rilievo sismico di tipo DownHole fino alla profondità di 50 m dal piano campagna. La strumentazione utilizzata è costituita da n.1 geofono tridirezionale MAE (Frequenza nominale 14 Hz), il quale viene ancorato alla parete del foro tramite meccanismo di serraggio elettrico.

Le indagini hanno consentito di ottenere una ricostruzione sismo-stratigrafica del sito investigato e la classificazione del sottosuolo di fondazione secondo le Norme Tecniche per le Costruzioni del 2018.

1. METODOLOGIE GEOFISICHE IMPIEGATE

Le indagini indirette, eseguite per la caratterizzazione sismica del sottosuolo, sono le seguenti:

- ✓ n. 5 rilievi sismici per onde superficiali di tipo MASW. Lo stendimento, costituito da 24 geofoni, è finalizzato alla ricostruzione del profilo di velocità Vs per la determinazione del parametro Vs_{eq} e la definizione della categoria sismica dei suoli di fondazione ai sensi delle NTC 2018.
- n. 5 registrazioni di prova sismica passiva di tipo HVSR per la definizione della frequenza di risonanza di sito in funzione dei significativi contrasti di impedenza sismica;
- ✓ n. 4 rilievi sismici di tipo DownHole fino alla profondità di 50 m dal piano campagna. La strumentazione utilizzata è costituita da n.1 geofono tridirezionale Ambrogeo (Frequenza nominale 14 Hz), il quale viene ancorato alla parete del foro tramite meccanismo di serraggio elettrico.

Figura 1 – Ubicazione delle indagini

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norm UNI EN ISO 9001:2015 Cert. n°2575QM UNI EN ISO 14001:2015 Cert n°2575EM

Le fasi di esecuzione delle indagini sono state condotte in conformità a quanto previsto dalle norme:

- ✓ ASTM D6429 99 (2011) e1 Standard Guide for Selecting Surface Geophysical Methods.
- ✓ Progetto SESAME (Site Effects Assessment using Ambient Excitations, 2004); European Commission, n. EVG1-CT-2000-00026.

Nelle seguenti tabelle sono riportati i dettagli delle prove sismiche eseguite:

ID Indexine	Geofoni	Distanza	Frequenza	Lunghezza	Coordinata E	Coordinata N	
ID Indagine	(nr.)	Intergeofonica	ntergeofonica geofoni Stendimen		Coordinata E	Coordinata N	
MASW 1	24	2.5 m	4.5 Hz	60 m	291423,00 m	4647404,00 m	
MASW 2	24	2.5 m	4.5 Hz	60 m	292688,00 m	4646665,00 m	
MASW 3	24	2.5 m	4.5 Hz	60 m	292953,47 m	4646432,66 m	
MASW 4	24	2.5 m	4.5 Hz	60 m	294176,00 m	4646295,00 m	
MASW 5	24	2.5 M	4.5 Hz	60 m	293620,00 m	4646539,00 m	

ID Indagine	Durata	Frequenza Campionamento	Coordinata E	Coordinata N
HVSR 1	30 min	512 Hz	291395,00 m	4647383,00 m
HVSR 2	30 min	512 Hz	292688,00 m	4646665,00 m
HVSR 3	30 min	512 Hz	292953,47 m	4646432,66 m
HVSR 4	30 min	512 Hz	294197,00 m	4646278,00 m
HVSR 5	30 min	512 Hz	293620,00 m	4646539,00 m

ID Indagine	Geofono triassiale (nr.)	Distanza Scoppio - Foro	Frequenza geofono	Profondità indagine	Coord. E	Coord. N
DOWNHOLE S 1	1	2 m	14 Hz	50 m	291262,00 m	4647444,00 m
DOWNHOLE S 7	1	2 m	14 Hz	50 m	293619,00 m	4646544,00 m
DOWNHOLE S 11	1	2 m	14 Hz	50 m	293577,00 m	4648214,00 m
DOWNHOLE S 6	1	2,5 m	14 Hz	55 m	292688,00 m	4646665,00 m

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575QM UNI EN ISO 14001:2015 Cert. n°2575EM

1.1 Indagine MASW

Al fine di caratterizzare la risposta sismica del sito in esame sono state effettuate una serie di acquisizioni MASW (Multi-channel Analysis of Surface Waves, analisi della dispersione delle onde di Rayleigh da misure di sismica attiva – e.g. Park et al., 1999) utili a definire il profilo verticale della Vs (velocità di propagazione delle onde di taglio).

Nel loro insieme, le procedure adottate sono state eseguite in accordo alle norme tecniche per le costruzioni del DM 17 gennaio 2018.La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

con:	
h	spessore dell'i-esimo strato;
Vsi	velocità delle onde di taglio nell'i-esimo strato;
N	numero di strati;
H	profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs
	non inferiore a 800 m/s.

Per depositi con profondità H del substrato superiore a 30.0 m, la velocità equivalente delle onde di taglio Vs,_{eq} è definita dal parametro Vs₃₀, ottenuto ponendo H=30.0 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Il rilievo MASW (Multichannel Analysis of Surface Waves) è una tecnica di indagine non invasiva (non è necessario eseguire perforazioni o scavi), che individua il profilo di velocità delle onde di taglio verticali Vs, basandosi sulla misura delle onde superficiali fatta in corrispondenza di diversi sensori (geofoni) posti sulla superficie del suolo.

Il contributo predominante alle onde superficiali è dato dalle onde di Rayleigh, che viaggiano con una velocità correlata alla rigidezza della porzione di terreno interessata dalla propagazione delle onde.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

In un mezzo stratificato le onde di Rayleigh sono dispersive, cioè onde con diverse lunghezze d'onda si propagano con diverse velocità di fase e velocità di gruppo (Achenbach, J.D., 1999, Aki, K. and Richards, P.G., 1980) o detto in maniera equivalente la velocità di fase (o di gruppo) apparente delle onde di Rayleigh dipende dalla frequenza di propagazione.

La natura dispersiva delle onde superficiali è correlabile al fatto che onde ad alta frequenza con lunghezza d'onda corta si propagano negli strati più superficiali e quindi danno informazioni sulla parte più superficiale del suolo, invece onde a bassa frequenza si propagano negli strati più profondi e quindi interessano gli strati più profondi.

Il metodo generalmente consente di ottenere una velocità di fase (o curva di dispersione) sperimentale apparente nel range di frequenze compreso tra 5Hz e 70Hz, quindi dà informazioni sulla parte più superficiale del suolo, sui primi 30.0 m-50.0 m, in funzione della rigidezza del suolo.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

1.1.1 Strumentazione utilizzata e tecniche operative

La strumentazione utilizzata per la registrazione del segnale (vedi Figura 2) è costituita da:

- a) Sismografo digitale MAE X820S a 24 bit 24-96 canali.
- b) Cavo sismico MAE con 24 multi coppie per collegamento dei geofoni al sismografo.
- c) 24 geofoni AMBROGEO a componente verticale con frequenza di 4.5 Hz.
- d) Geofono verticale trigger completo di cavo e connettore da 4.5 Hz.
- e) Mazza battente non strumentata di 8 Kg per energizzare onde compressionali.
- f) Piastra di battuta in alluminio con diametro = 210 mm e spessore = 28 mm.

Figura 2. Attrezzatura utilizzata per effettuare le indagini sismiche di tipo MASW

Il profilo sismico eseguito ha una lunghezza di 60 metri ed è costituito da 24 geofoni distanziati di 2.5 m.

Per lo stendimento sono state effettuate molteplici registrazioni a 3, 4 e 5 volte la distanza intergeofonica (2.5m) ad entrambi gli estremi dello stendimento ottenendo 6 registrazioni di onde superficiali.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. nº2575QM UNI EN ISO 14001:2015 Cert. nº2575EM

1.1.2 Elaborazione dei dati

Dopo l'acquisizione dei dati, l'elaborazione con il metodo MASW prevede tre fasi di lavoro:

ONSULTING

- la prima fase prevede il calcolo della velocità di fase (o curva di dispersione) apparente sperimentale.

INGEGNERIA

- la seconda fase consiste nel calcolare la velocità di fase apparente numerica.

geologia - ingegneria - ambiente

- la terza ed ultima fase consiste nell'individuazione del profilo di velocità delle onde di taglio verticali Vs, modificando opportunamente lo spessore h, le velocità delle onde di taglio Vs e di compressione Vp (o in maniera alternativa alle velocità Vp è possibile assegnare il coefficiente di Poisson), la densità di massa degli strati che costituiscono il modello del suolo, fino a raggiungere una sovrapposizione ottimale tra la velocità di fase (o curva di dispersione) sperimentale e la velocità di fase (o curva di dispersione) numerica corrispondente al modello di suolo assegnato.

Tramite il processo di picking dei massimi di ampiezza del modo fondamentale e degli eventuali modi superiori. Successivamente mediante il processo di inversione, si ottiene il profilo di velocità con la profondità che permette di definire i parametri $V_{Seq} e Vs30$.

I dati delle prove MASW sono stati elaborati con il software WinMASW 2018 Lite (www.eliosoft.it).

1.2 Indagine HVSR

Il metodo HVSR (Horizontal to Vertical Spectral Ratio) utilizza segnali sismici ottenuti da stazione sismica singola: Tromografo digitale TROMINO, che misura il tremore sismico. Attraverso i rapporti spettrali di tali segnali, si ha la possibilità di effettuare la misura immediata della frequenza fondamentale di risonanza del sottosuolo, parametro che può essere correlato con gli effetti di sito.

La prova sismica passiva a stazione singola mette in luce le frequenze alle quali il moto del terreno viene amplificato per risonanza stratigrafica locale, in quanto il rumore sismico agisce come sorgente di eccitazione dei terreni costituenti il sub-strato. In particolare, un suolo vibra con maggiore ampiezza a specifiche frequenze (per l'appunto di risonanza) non solo quando è eccitato da un terremoto, ma anche quando è eccitato da un tremore di qualsiasi origine.

Questo fa sì che la misura delle frequenze di risonanza dei terreni sia possibile ovunque ed in modo semplice, anche in assenza di terremoti. Le frequenze a cui si manifesta la risonanza sono descritte dalla relazione: f=Vs/4h (formula semplificata) dove Vs è la velocità delle onde di taglio nello strato che risuona e h è lo spessore di detto strato. La prova, comunemente nota con il termine H/V o HVSR (rapporto tra le componenti spettrali orizzontali H e verticale V) fu applicata per la prima volta da Nogoshi e Igarashi(1970) e resa popolare da Nakamura (1989).Infatti è proprio dal grafico del rapporto tra le componenti spettrali orizzontale e verticale che viene evidenziata la frequenza (o più frequenze se si è in presenza di un profilo stratigrafico multistrato con contrasti di impedenza significativi) attraverso un "picco" della curva (in genere dovuto ad un minimo della componente verticale, riscontrabile negli spettri delle singole componenti).

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Giaconsulting geologia - ingegneria - ambiente

1.2.1 Strumentazione utilizzata ed elaborazione dei dati

Per eseguire le indagini HVSR è stato utilizzato un tromografo digitale TROMINO (**Figura 3**). Lo strumento è dotato di tre sensori velocimetrici elettrodinamici ortogonali ad alta risoluzione, i quali trasmettono il segnale ad un sistema di acquisizione digitale a basso rumore.

L'ancoraggio al suolo avviene tramite infissione di appositi piedini; l'orizzontalità è controllata per mezzo di una bolla sferica.

Il TROMINO viene posizionato con il suo asse maggiore allineato nella direzione N-S e messo in opera nel punto considerato più opportuno nel sito oggetto di indagine. Ottenuto il miglior accoppiamento dei sensori con il terreno viene messo in acquisizione per un lasso di tempo compreso tra 20-30 min. con una frequenza di campionamento di 512 Hz. Su memoria interna vengono salvati in un unico file i dati rilevati in automatico; si tratta delle velocità misurate secondo le direzioni ortogonali est-ovest, nord-sud (dello strumento) e sulla verticale.

I dati registrati sono stati successivamente elaborati mediante il software Grilla.

Figura 3. Tromino utilizzato per effettuare le indagini di sismica passiva di tipo HVSR.

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

1.3 Indagine DOWN HOLE

Le prove sismiche Down-Hole (**Figura 4**), sono eseguite con lo scopo di misurare la velocità delle onde sismiche dirette, che si propagano dalla superficie nel terreno in profondità, energizzando il terreno in direzione verticale oppure in direzione trasversale (parallelamente al suolo). Nel primo caso sono generate prevalentemente onde di compressione (onde P) che si propagano in profondità e vengono registrate al meglio dal geofono verticale (asse z). Nel secondo caso verranno generate prevalentemente onde di taglio (onde S) visibili principalmente sui geofoni con l'asse posto orizzontalmente (assi x e y).

Figura 4 - Schema tecnico delle indagini Down-Hole

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575QM UNI EN ISO 14001:2015 Cert. n°2575EM

Il sistema di ricezione, costituito da un geofono tridimensionale da foro ad ancoraggio pneumatico, viene calato nel foro, sino alla profondità massima di investigazione e progressivamente sollevato dell'interdistanza propria di ciascuna indagine (nel caso in esame 1 m). Le onde di taglio hanno velocità inferiori rispetto a quelle di compressione e quindi raggiungeranno il geofono triassiale quando il primo fronte d'onda di compressione è già transitato. Questo passaggio purtroppo costituisce un disturbo per la misura delle onde trasversali in quanto i geofoni orizzontali si trovano ancora in movimento all'arrivo dell'onda trasversale o di taglio. Per migliorare il rapporto fra l'energia dell'onda di compressione e l'energia dell'onda trasversale (di taglio) a favore di quest'ultima, si realizza una doppia energizzazione orizzontale con verso opposto. La sottrazione delle forme d'onda relative a queste due acquisizioni, riduce sensibilmente la componente di compressione presente nel segnale. La misura dei tempi dei primi arrivi delle onde sismiche deve essere realizzata con precisione e con un dettaglio non superiore il decimo di millisecondo. Ogni ritardo fra il momento dell'energizzazione fornita al terreno e l'inizio della registrazione sul sismografo si traduce in un errore nei valori di velocità misurati.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°25750M UNI EN ISO 14001:2015 Cert. n°2575EM

1.3.1 Strumentazione utilizzata e tecniche operative

L'attrezzatura e la strumentazione utilizzata è costituita da:

- •un sistema di energizzazione sia per le onde P che per le onde S è stata effettuata mediante massa battente. Al fine di facilitare la generazione delle onde trasversali per la valutazione della velocità di propagazione delle onde di taglio, il terreno è stato sollecitato tangenzialmente tramite una traversina di legno bloccata da una Dacia Duster 4X4 e posizionata ad una distanza di circa 1,0 metri dall'asse del foro, in modo da ridurre la dissipazione in fase d'energizzazione, inoltre la registrazione delle onde di taglio per ogni campionamento, è avvenuta mediante due battute aventi opposte direzioni di impatto;
- •un sistema di ricezione costituito da un geofono tridimensionale inserito all'interno del foro del sondaggio geognostico a c.c. opportunamente attrezzato, rivestito adeguatamente con un tubo PVC, mentre è stato cementato lo spazio esistente tra le pareti e il tubo di rivestimento, in modo da garantire la continuità di contatto terreno-tubazione. Il passo di lettura è stato di 1,0 metri e ad ogni acquisizione il geofono è stato reso solidale alla parete del foro, mediante un sistema ad espansione pneumatica. Ogni campionamento è stato caratterizzato da 3 tracce sismiche, relative alla misura della terna di geofoni all'interno del foro;
- •sistema di acquisizione dati: con memoria dinamica a 24 bit composto da 24 dataloggers a 4 canali ciascuno per un totale di 96 canali, sismografo multicanale <u>M.A.E. modello X 820 S</u> (Figura 5), avente le seguenti caratteristiche tecniche:

Figura 5 - Sismografo multicanale M.A.E. modello X820 S.

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Risoluzione campione	ADC Delta-Sigma @24 bit (Fc max 50000 Hz)
Numero di canali	n. 24 - 48 - 72- 96
Banda passante	0-25000Hz / selezionabile Low Pass Filter max.2000Hz
Distorsione massima	0.0005%
Range dinamico	128dB
Common mode rejection	110 dB a 60 Hz
Diafonia	-128dB a 20 Hz
Frequenza di campionamento	Selezionabile da 60 Hz a 52000 Hz
Soglia di rumore dell'amplificatore	1μV
Filtro anti alias	-3dB, 80% della frequenza di Nyquist, -80dB
Range massimo segnale in ingresso	+/-1.25V
Impedenza di ingresso	39KOhm

Tabella 1 - Caratteristiche tecniche del sismografo utilizzato

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma

1.3.2 Elaborazione dei dati

L'elaborazione della Down-Hole è stata eseguita svolgendo le seguenti fasi:

- > picking dei primi arrivi delle onde P e delle onde S;
- misura dei tempi di ricezione dei primi impulsi rilevati (t)
- calcolo dei tempi verticali (t)

L'elaborazione dei dati acquisiti in campagna è stata effettuata con il software *DownHole 2020* della *Geostru*. Gli elaborati relativi sono riportati sia in forma grafica che numerica.

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575CM UNI EN ISO 14001:2015 Cert. n°2575EM

2. INDAGINI GEOFISICHE IN SITO

2.1 SITO 1

2.1.1 MASW 1

La MASW numero 1 è ubicata in un'area adiacente Via Flaminia Vecchia come riportato in **Figura 6**, in cui è rappresentata anche la posizione dei 6 shots effettuati. Per eseguire l'indagine è stato utilizzato uno stendimento con lunghezza di 60 metri, composto da 24 geofoni distanziati di 2.5 metri. Al fine di rendere i geofoni solidali con il terreno, sono state impiegate delle apposite basette per l'utilizzo su asfalto.

Figura 6. Ubicazione della MASW n.1 (a) e relativo stendimento (b).

Ai fini dell'elaborazione delle tracce acquisite, sono stati considerati i parametri riportati nella seguente tabella.

Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	50
Velocità minima di elaborazione [m/s]	120
Velocità massima di elaborazione [m/s]	1500

Tabella 2 – Parametri utilizzati per l'elaborazione dei dati

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Tracce acquisite relative ai 6 shots effettuati:

Figura 7 – Tracce acquisite relative ai 6 shots effettuati.

G.I.A. Consulting S.r.l. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma

60

60

Spettri di frequenza – velocità di fase.

Figura 8 – Spettri di velocità di fase – frequenza delle tracce acquisite.

<u>G.I.A. Consulting S.r.I.</u> Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cett. n°2575QM UNI EN ISO 14001:2015 Cett. n°2575EM

Risultati dell'inversione e modello sismo stratigrafico del sottosuolo:

Figura 9 – Risultati dell'approccio di inversione (in alto) e relativo modello sismo-stratigrafico del sottosuolo (in basso).

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 CELOBE UNI EN ISO 14001:2015 Cert. n°2575QM

Le elaborazioni effettuate hanno consentito di ricostruire il profilo di velocità delle onde di taglio (Vs) e il modello sismo-stratigrafico del sottosuolo ritenuto rappresentativo dell'area investigata. E' stato determinato il parametro Vs,eq del sito, definendo quindi la categoria di suolo nell'area investigata:

Vs30 e Vs,eq = **343 m/s**

Categoria di suolo: C

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575QM UNI EN ISO 14001:2015 Cert. n°2575EM

2.1.2 HVSR 1

Le indagini HVSR sono state svolte in un'area adiacente Via Flaminia Vecchia, come indicato in **Figura 10.** Il TROMINO è stato posizionato al fine di determinare le frequenze di risonanza caratteristiche del sito, e lasciato acquisire in modo manuale per un tempo di 30 minuti.

Figura 10 – Ubicazione indagine HVSR 1.

Risultati

Instrument: TEB-0504/01-19

Data format: 32 bit

Full scale [mV]: 89

Start recording: 12/01/2021 13:26:01 End recording: 12/01/2021 13:56:01

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h30'00". Analyzed 92% trace (manual window selection)

Sampling rate: 512 Hz

Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

HORIZONTAL TO VERTICAL SPECTRAL RATIO

H/V TIME HISTORY

SINGLE COMPONENT SPECTRA

G.I.A. Consulting S.r.l. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma

Max. H/V at 1.31 ± 0.19 Hz (in the range 0.2 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]								
f ₀ > 10	/ L _w	1	.31 > 0.50	OK				
n _c (f ₀) >	200	21	78.8 > 200	OK				
σ _A (f) < 2 for 0.5f ₀ < f	< 2f ₀ if f ₀ > 0.5Hz	Exceeded	0 out of 64 tim	es OK				
σ _A (f) < 3 for 0.5f ₀ < f	< 2f ₀ if f ₀ < 0.5Hz	:						
	Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]							
Exists f ⁻ in [f ₀ /4, f ₀]	$ A_{H/V}(f^{-}) < A_0 / 2$		0.5 Hz	OK				
Exists f ⁺ in [f ₀ , 4f ₀]	$ A_{H/V}(f^+) < A_0 / 2$		2.406 Hz	OK				
A ₀ >	2		2.38 > 2	OK				
f _{peak} [A _{H/V} (f) ± σ _A	$(f)] = f_0 \pm 5\%$	0.14	4532 < 0.05		NO			
σ _f < ε(f ₀)	0.190	74 < 0.13125		NO			
σ _A (f ₀) <	θ(f₀)	0.	199 < 1.78	OK				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	window length number of windows used in the analysis number of significant cycles current frequency H/V peak frequency standard deviation of H/V peak frequency threshold value for the stability condition $\sigma_f < \epsilon(f_0)$ H/V peak amplitude at frequency f_0 H/V curve amplitude at frequency f frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^{-}) < A_0/2$ frequency between f_0 and $4f_0$ for which $A_{H/V}(f^{+}) < A_0/2$ standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or divided standard deviation of log $A_{H/V}(f)$ curve							
~\/	Three	shold values for	σ_{f} and $\sigma_{A}(f_{0})$,				
Freg. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0			
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀			
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58			
$\log \theta(f_0)$ for $\sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20			

All'indagine di sismica passiva è stato possibile identificare la frequenza di risonanza del sito, corrispondente al picco di frequenza del rapporto spettrale H/V pari a 1.31 ± 0.19 Hz.

2.1.3 DOWNHOLE S1

Questa indagine Down-Hole è stata svolta nel foro di sondaggio (S1), ubicato nell'area adiacente Via Flaminia Vecchia, come riportato in **Figura 11**, condizionato con tubo PVC ed opportunamente cementato, in modo da rendere solidale il tubo con il terreno circostante.

Figura 11 - Ubicazione del foro di sondaggio (a) ed esecuzione della prova Down-hole in sito (b)

L'energizzazione per la generazione delle onde di compressione (P) è stata realizzata con mazza di 8 Kg battente su piattello metallico. Per facilitare la generazione ed il rilievo delle onde trasversali con adeguata componente sul piano orizzontale (SH) si è utilizzato una traversina in legno, opportunamente ancorata (Dacia Duster 4X4), producendo un impatto laterale. Sono state effettuate, quindi, per ogni stazionamento, due energizzazioni per le onde S (con inversione di fase), con piano di oscillazione prevalentemente orizzontale, e una verticale per la generazione prevalente delle onde P. Le energizzazioni sono state realizzate ad una distanza di 2.5 metri dal boccaforo.

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norm UNI EN ISO 9001:2015 Cert. n°2575QM UNI EN ISO 14001:2015 Cert n°275FEM

Nella **Tabella 3** sono riportati i valori dei tempi d'arrivo relativi alle onde P e S, i tempi corretti sulla verticale (T corr. P e T corr. S), per tenere conto della distanza del punto di energizzazione dal foro di sondaggio, i valori delle velocità Vp e Vs relativi all'intervallo corrispondente ed infine i principali moduli elastici dinamici: il modulo di taglio (G) e il modulo di compressibilità volumetrica (Ev).

Profondità (m)	T P (s)	T SH (s)	Dist. Scoppio-Foro (m)	T P (s)	T SH (s)	¥, (m/s)	¥₅∎ (młs)	γ (kN/mc)	p (kg/mc)	G (Mpa)	Ev (Mpa)
1	0,0065	0,0144	2,5	0,0024	0,0053	414,24	186,98	14,71	1500	524,45	187,47
2	0.0062	0.0157	2.5	0.0039	0,0098	516.38	203.92	14.71	1500	623.76	316.81
3	0.0081	0.0231	2.5	0.0062	0,0177	482.11	169.05	14.71	1500	428.68	291.49
4	0.0101	0.0252	25	0.0086	0.0214	467.03	187.18	14 71	1500	525.56	257.10
5	0,0101	0.0281	2,5	0.0116	0.0251	430.01	198.94	14,71	1500	593.65	198 21
5	0,013	0,0201	2,3	0,0110	0,0201	430,01	130,34	14,11	1500	005,00	100,21
6	0,0143	0,0266	2,5	0,0132	0,0246	454,55	244,36	14,71	1500	895,68	190,49
7	0,0154	0,0293	2,5	0,0145	0,0276	482,66	253,69	14,71	1500	965,36	220,73
8	0,0165	0,0298	2,5	0,0157	0,0284	507,97	281,26	14,71	1500	1186,60	228,84
9	0,0193	0,0308	2,5	0,0186	0,0297	483,98	303,27	17,65	1800	1655,53	200,89
10	0,0191	0,0312	2,5	0,0185	0,0303	539,67	330,38	17,65	1800	1964,68	262,29
11	0.0211	0.0324	2.5	0.0206	0.0316	534.62	348.16	17.65	1800	2181.93	223.55
12	0.0205	0.0325	2.5	0.0201	0,0318	597,93	377,16	17,65	1800	2560,47	302,15
13	0,0223	0,0334	2,5	0,0219	0,0328	593,64	396,35	17,65	1800	2827,73	257,31
14	0.0226	0.0337	2.5	0.0222	0.0332	629,27	422.00	17.65	1800	3205,54	285.36
15	0.0229	0,0353	2.5	0.0226	0,0348	664,06	430,79	17,65	1800	3340,45	348,36
16	0.024	0.0373	2.5	0.0237	0.0369	674.76	434.16	17.65	1800	3392,89	367.15
17	0.0244	0.0376	2.5	0.0241	0.0372	704.21	456.99	17.65	1800	3759.12	391.44
18	0.0248	0.0374	2.5	0.0246	0.0370	732.77	485,90	17,65	1800	4249,84	399,88
19	0,0229	0,0393	2,5	0,0227	0,0390	836,85	487,63	17,65	1800	4280,05	689,89
20	0,0263	0,0393	2,5	0,0261	0,0390	766,37	512,87	17,65	1800	4734,57	425,92
21	0,0267	0,0404	2,5	0,0265	0,0401	792,07	523,47	17,65	1800	4932,42	471,62
22	0,0269	0,0434	2,5	0,0267	0,0431	823,11	510,17	17,65	1800	4685,01	594,84
23	0,0274	0,0435	2,5	0,0272	0,0432	844,36	531,85	17,65	1800	5091,56	604,43
24	0,0263	0,0443	2,5	0,0202	0,0441	810.47	573.62	17,65	1800	5922.78	392.66
26	0.0299	0.0431	2,5	0.0298	0.0429	873.58	606.03	17.65	1800	6610.91	492,19
27	0,0315	0,0448	2,5	0,0314	0,0446	860,81	605,26	17,65	1800	6594,04	454,58
28	0,0324	0,0455	2,5	0,0323	0,0453	867,64	617,83	16,18	1650	6298,33	402,33
29	0,0329	0,0454	2,5	0,0328	0,0452	884,73	641,14	16,18	1650	6782,41	387,21
30	0,0338	0,0475	2,5	0,0337	0,0473	890,65	633,77	16,18	1650	6627,42	425,22
31	0,0333	0,0482	2,5	0,0332	0,0480	933,95	645,24	16,18	1650	6869,56	523,30
32	0,0353	0,0501	2,5	0,0356	0,0433	034,U0 909 19	640,67	10,10	1650	7171 17	415,37
34	0,0304	0,0502	2,5	0,0303	0.0503	901.90	676.42	16,10	1650	7549 57	335 54
35	0.0374	0.0517	2,5	0.0373	0.0516	938.21	678.71	16,18	1650	7600.62	438,99
36	0,0387	0,0523	2,5	0,0386	0,0522	932,47	689,99	16,18	1650	7855,52	387,28
37	0,0382	0,0547	2,5	0,0381	0,0546	970,79	677,96	16,67	1700	7813,69	560,33
38	0,039	0,0523	2,5	0,0389	0,0522	976,47	728,15	16,67	1700	9013,40	419,14
39	0,038	0,0534	2,5	0,0379	0,0533	1028,42	731,84	16,67	1700	9104,93	584,02
40	0,0407	0,0552	2,5	0,0406	0,0551	984,72	726,05	16,67	1700	8961,57	453,56
41	0,0409	0,0533	2,5	0,0408	0,0538	1004,31	774 95	17,65	1800	10453,81	421,70
43	0,0413	0,0543	2,5	0,0410	0.0567	1004,10	758.32	17,65	1800	10350.90	451.43
44	0,0427	0,0572	2,5	0,0426	0,0571	1032.11	770,47	18,63	1900	11278,90	520.11
45	0,0429	0,0568	2,5	0,0428	0,0567	1050,57	793,48	18,63	1900	11962,45	502,03
46	0,0444	0,0578	2,5	0,0443	0,0577	1037,56	797,02	18,63	1900	12069,64	436,14
47	0,0456	0,0609	2,5	0,0455	0,0608	1032,16	772,85	18,63	1900	11348,59	511,02
48	0,0467	0,061	2,5	0,0466	0,0609	1029,23	787,95	18,63	1900	11796,49	439,83
49	0,0471	0,0608	2,5	0,0470	0,0607	1041,69	806,97	18,63	1900	12372,79	412,03
50	0,0474	0,0628	2,5	0,0473	0,0627	1056,17	(37,17	10,63	1900	12074,21	503,55

Toss P: tempo di primo arrivo osservato onde P

T oss SH: tempo di primo arrivo osservato onde S (S1+S2)

T corr P: tempo di primo arrivo corretto onde P T corr SH: tempo di primo arrivo corretto onde S (S1+S2)

					_
V _n ·	vel	ocità	on	de	Р

vp. verocita onde i				
V _{sH} : velocità media onde S				
y: Peso di volume				
G: Modulo di deformazione a taglio				
Ev: Modulo di compressibilità volumetrica				

Tabella 3 – Parametri prova Down-Hole.

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575QM GLOBBE UNI EN ISO 14001:2015 Cert. n°2575EM

In accordo con la stratigrafia del sondaggio S1 eseguito dalla Ditta SONDEDILE S.r.l., l'elaborazione dei dati acquisiti ha consentito di ricostruire il seguente modello sismo-stratigrafico (Figura 12):

- 1. il primo sismo-strato si individua fino alla profondità di circa 8.32 m dal piano campagna (p.c.), con valori di velocità medie delle onde P e delle onde S rispettivamente di 469.37 m/s e 215.67 m/s. Questo è ascrivibile al terreno di riporto;
- 2. il secondo sismo-strato si individua fino alla profondità di circa 27.17 m dal piano campagna (p.c.), con valori di velocità medie delle onde P e delle onde S rispettivamente di 720.00 m/s e 467.41 m/s. Questo è associabile a sabbia limosa riscontrata;
- 3. il terzo sismo-strato si individua fino alla profondità di circa **35.90 m** dal piano campagna (p.c.), con valori di velocità medie delle onde P e delle onde S rispettivamente di 905.87 m/s e 653.67 m/s. Questo è associabile al limo sabbioso riscontrato;
- 4. il quarto sismo-strato si individua fino alla profondità di circa 40.00 m dal piano campagna (p.c.), con valori di velocità medie delle onde P e delle onde S rispettivamente di 990.10 m/s e 716.00 m/s. Questo è associabile all'argilla limosa riscontrata;
- 5. il quarto sismo-strato si individua fino alla profondità di circa 43.00 m dal piano campagna (p.c.), con valori di velocità medie delle onde P e delle onde S rispettivamente di 1005.73 m/s e 765.08 m/s. Questo è associabile alle sabbie riscontrate;
- 6. infine, si individua il quinto sismo-strato fino alla profondità di 50 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 1037.22 m/s e 788.12 m/s. Quest'ultimo sismo-strato è associabile alla ghiaia poligenica prelevata.

Figura 12 - Modello sismico-stratigrafico

	Profondità (m)	V _P _{media} (m/s)	V _{SHmedia} (m/s)	γ (kN/mc)	Gmedio (Mpa)	Ev _{medio} (Mpa)
Strato 1 - TR	9,00	469,37	215,67	14,71	717,97	236,39
Strato 2 - MSL	32,00	720,00	467,41	17,65	4070,00	419,35
Strato 3 - MS	36,00	905,87	653,67	16,18	7058,57	413,74
Strato 4 - M	40,00	990,10	716,00	16,67	8723,39	504,26
Strato 5 - S	43,00	1005,73	765,08	17,65	10537,26	415,73
Strato 6 - G	50,00	1037,22	788,12	18,63	11843,30	475,82

Tabella 4 – Valori medi dei parametri relativi ai 6 sismo-strati individuati.

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575QM GLOBE UNI EN ISO 14001:2015 CERTIFICAZIONI UNI EN ISO 14001:2015 Cert. n°2575EM

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs eq (in m/s), definita dall'espressione:

$$Vs, eq = H / \sum_{i=1}^{N} \left(\frac{h_i}{V_{s,i}} \right)$$
(1)

Dove:

H: profondità del **substrato sismico** (in m), definito come quella formazione, costituita da roccia o terreno molto rigido caratterizzata da Vs non inferiore a 800 m/s;

N: numero strati;

Vs,i: velocità delle onde di taglio nell'i-esimo strato (m/s);

hi: spessore dell'i-esimo strato (in m).

Per depositi con **profondità H del substrato superiore a 30 m**, la velocità equivalente delle onde di taglio è definita dal parametro Vs30 ottenuto ponendo H = 30 m nell'espressione (1) e considerando la proprietà degli strati di terreno fino a tale profondità.

È stato, quindi, determinato il parametro Vs, eq del sito per i primi 30 m di profondità dal piano campagna, definendo quindi la categoria di suolo nell'area investigata:

Vseq = 352.42 m/s

Categoria di suolo: C

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575QM UNI EN ISO 14001:2015 Cert. p°2575M

2.2 SITO 2

2.2.1 MASW 2

La MASW numero 2 è ubicata a lato di via del Baiardo, come riportato in Figura 13, in cui è rappresentata anche la posizione dei 6 shots effettuati. Per eseguire l'indagine è stato utilizzato uno stendimento con lunghezza di 60 metri, composto da 24 geofoni distanziati di 2.5 metri. Al fine di rendere i geofoni solidali con il terreno, sono state impiegate delle apposite basette per l'utilizzo su asfalto.

Figura 13– Ubicazione della MASW n.2 (a) e relativo stendimento (b).

Ai fini dell'elaborazione delle tracce acquisite, sono stati considerati i parametri riportati nella seguente tabella.

Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	50
Velocità minima di elaborazione [m/s]	120
Velocità massima di elaborazione [m/s]	1500

Tabella 5 – Parametri utilizzati per l'elaborazione dei dati

G.I.A. Consulting S.r.l. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

UNI EN ISO 9001:2015 Cert. nº2575QM OBE UNI EN ISO 14001:2015 Cert. n°2575EN

Tracce acquisite relative ai 6 shots effettuati:

Figura 14 – Tracce acquisite relative ai 6 shots effettuati.

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma

Spettri di frequenza – velocità di fase.

Figura 15 – Spettri di velocità di fase – frequenza delle tracce acquisite.

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575QM GLOBE CERTIFICAZIONI UNI EN ISO 14001:2015 Cert. n°2575EM

Risultati dell'inversione e modello sismo stratigrafico del sottosuolo:

Figura 16 – Risultati dell'approccio di inversione (in alto) e relativo modello sismo-stratigrafico del sottosuolo (in basso).

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575QM UNI EN ISO 14001:2015 Cert. n°2575EM

Le elaborazioni effettuate hanno consentito di ricostruire il profilo di velocità delle onde di taglio (Vs) e il modello sismo-stratigrafico del sottosuolo ritenuto rappresentativo dell'area investigata. E' stato determinato il parametro Vs,eq del sito, definendo quindi la categoria di suolo nell'area investigata:

Vs30 e Vs,eq = 226 m/s

Categoria di suolo: C

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575QM UNI EN ISO 14001:2015 Cert. n°2575EM

2.2.2 HVSR 2

Le indagini HVSR sono state svolte in un terreno ai lati di via del Baiardo, come indicato in Figura 17. Il TROMINO è stato posizionato al fine di determinare le frequenze di risonanza caratteristiche del sito, e lasciato acquisire in modo manuale per un tempo di 30 minuti.

Figura 17 – Ubicazione indagine HVSR 2.

Risultati

TEB-0504/01-19 Instrument:

Data format: 32 bit

Full scale [mV]: 89

Start recording: 12/01/2021 14:39:15 End recording: 12/01/2021 15:09:15

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h30'00". Analyzed 51% trace (manual window selection)

Sampling rate: 512 Hz

Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

sistema di gestione a norma UNI EN ISO 9001:2015 Cert. nº2575QM OBE UNI EN ISO 14001:2015 Cert. n°2575EN

HORIZONTAL TO VERTICAL SPECTRAL RATIO

H/V TIME HISTORY

DIRECTIONAL H/V

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma

GFR .

Max. H/V at 0.22 ± 0.39 Hz (in the range 0.2 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]							
$f_0 > 10 / L_w$	0.22 > 0.50		NO				
n _c (f ₀) > 200	201.3 > 200	OK					
σ _A (f) < 2 for 0.5f ₀ < f < 2f ₀ if f ₀ > 0.5Hz	Exceeded 0 out of 12 times	OK					
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$							
Criteria [At least 5	for a clear H/V peak						
Exists f ⁻ in $[f_0/4, f_0] A_{H/V}(f^-) < A_0 / 2$	0.094 Hz	OK					
Exists f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	0.594 Hz	OK					
A ₀ > 2	4.01 > 2	OK					
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	1.77781 < 0.05		NO				
$\sigma_{\rm f} < \epsilon(f_0)$	0.3889 < 0.04375		NO				
$\sigma_{A}(f_{0}) < \theta(f_{0})$	0.5719 < 2.5	OK					

Lw	window length					
nw	number of windows	s used in the ana	alysis			
$n_c = L_w n_w f_0$	number of significa	nt cycles				
f	current frequency					
fo	H/V peak frequency	y				
σ _f	standard deviation	of H/V peak free	luency			
ε(f ₀)	threshold value for	the stability con	dition $\sigma_f < \epsilon(f_0)$			
Â ₀	H/V peak amplitude	e at frequency fo				
A _{H/V} (f)	H/V curve amplitud	e at frequency f				
f-	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$					
f +	frequency between	fo and 4fo for wh	nich $A_{H/V}(f^+) < A_{H/V}(f^+)$	o/2		
σ _A (f)	standard deviation	of $A_{H/V}(f)$, $\sigma_A(f)$ is	s the factor by w	hich the mean A _{H/}	/(f) curve	
	should be multiplied	d or divided				
σ _{logH/ν} (f)	standard deviation	of log Aн/v(f) cur	ve			
$\theta(f_0)$	threshold value for	the stability con	dition $\sigma_A(f) < \theta(f_0)$)		
	Thre	shold values for	σ_f and $\sigma_A(f_0)$			
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0	
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58	
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$) 0.48	0.40	0.30	0.25	0.20	

Dall'indagine di sismica passiva è stato possibile identificare la frequenza di risonanza del sito, corrispondente al picco di frequenza del rapporto spettrale H/V pari a 0.22 ± 0.39 Hz.

2.2.3 DOWNHOLE S6

L'indagine Down-Hole è stata svolta nel foro di sondaggio (S6), ubicato in un'area adiacente via del Baiardo, come riportato in **Figura 18**, condizionato con tubo PVC ed opportunamente cementato, in modo da rendere solidale il tubo con il terreno circostante.

Figura 18. Ubicazione del foro di sondaggio (a) ed esecuzione della prova Down-hole in sito (b)

L'energizzazione per la generazione delle onde di compressione (P) è stata realizzata con mazza di 8 Kg battente su piattello metallico. Per facilitare la generazione ed il rilievo delle onde trasversali con adeguata componente sul piano orizzontale (SH) si è utilizzato una traversina in legno, opportunamente ancorata (Dacia Duster 4X4). Sono state effettuate, quindi, per ogni stazionamento, due energizzazioni per le onde S (con inversione di fase), con piano di oscillazione prevalentemente orizzontale, e una verticale per la generazione prevalente delle onde P. Le energizzazioni sono state realizzate ad una distanza di 2,5 metri dal boccaforo.

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Nella **Tabella 6** sono riportati i valori dei tempi d'arrivo relativi alle onde P e S, i tempi corretti sulla verticale (T corr. P e T corr. S), per tenere conto della distanza del punto di energizzazione dal foro di sondaggio, i valori delle velocità Vp e Vs relativi all'intervallo corrispondente ed infine i principali moduli elastici dinamici: il modulo di taglio (G) e il modulo di compressibilità volumetrica (Ev).

Profondità (m)	T P (s)	T SH (s)	Dist. Scoppio-Foro (m)	T P (s)	T SH (s)	Yr (mis)	Y _{se} (m/s)	y (kN/mc)	p (kg/mc)	G (Mpa)	Ev (Mpa)
1	0,0088	0,0194	2,5	0,0033	0,0072	305,98	138,79	16,18	1650	317,85	112,09
2	0.0089	0.0247	2.5	0.0056	0,0154	359.73	129.62	16,18	1650	277.21	176.55
3	0.0079	0.027	2.5	0.0061	0.0207	494.32	144.63	16,18	1650	345.16	357.16
4	0,0010	0.0222	25	0.0070	0.0239	575.24	167.27	16,10	1650	46165	494 44
	0,0002	0,0202	2,0	0,0010	0,0200	500.00	170.01	10,10	1050	407.00	050.40
0	0,011	0,0322	2,9	0,0099	0,0200	503,62	173,61	16,18	1600	497,30	302,19
6	0,0107	0,0437	2,5	0,0099	0,0403	607,48	148,74	16,18	1650	365,05	560,22
7	0,0107	0,0458	2,5	0,0101	0,0431	694,68	162,29	17,65	1800	474,10	805,42
8	0,0133	0,0459	2,5	0,0127	0,0438	630,19	182,60	17,65	1800	600,20	634,82
9	0,0134	0,0459	2,5	0,0129	0,0442	697,07	203,50	17,65	1800	745,44	775,25
10	0,0148	0,0453	2,5	0,0144	0,0439	696,47	227,54	17,65	1800	931,98	748,86
11	0.017	0.0465	2.5	0.0166	0.0453	663,56	242.59	17.65	1800	1059.31	651.32
12	0,0182	0,0477	2,5	0,0178	0,0467	673,50	256,97	17,65	1800	1188,64	657,99
13	0,0174	0,0474	2,5	0,0171	0,0465	760,82	279,29	20,59	2100	1638,03	997,16
14	0,0179	0,0505	2,5	0,0176	0,0497	794,50	281,61	20,59	2100	1665,42	1103,51
15	0,0181	0,0537	2,5	0,0179	0,0530	840,16	283,18	20,59	2100	1684,04	1257,79
16	0,0187	0,0537	2,5	0,0185	0,0531	866,00	301,57	20,59	2100	1909,79	1320,26
17	0,019	0,0552	2,5	0,0188	0,0546	904,36	311,28	20,59	2100	2034,84	1446,21
18	0,02	0,0561	2,5	0,0198	0,0556	908,64	323,94	20,59	2100	2203,62	1440,00
19	0,0193	0,0552	2,5	0,0191	0,0547	992,94	347,17	20,59	2100	2531,06	1732,98
20	0,0211	0,0572	2,5	0,0209	0,0568	955,24	352,37	20,59	2100	2607,48	1568,57
21	0,0217	0,0589	2,5	0,0215	0,0585	974,58	359,05	20,59	2100	2707,32	1633,60
22	0,0225	0,0579	2,5	0,0224	0,0575	984,07	382,41	20,59	2100	3071,00	1624,16
23	0,023	0,0601	2,5	0,0229	0,0597	1005,89	384,95	20,59	2100	3111,91	1709,89
24	0,024	0,0587	2,5	0,0239	0,0584	1005,41	411,07	19,61	2000	3379,58	1571,09
25	0,0239	0,061	2,5	0,0238	0,0607	1051,24	411,88	19,61	2000	3392,91	1757,83
26	0,0226	0,0622	2,5	0,0225	0,0619	1155,75	419,93	19,61	2000	3526,90	2201,26
27	0,0238	0,0625	2,0	0,0237	0,0622	1139,31	433,80	19,61	2000	3764,48	2094,11
20	0,0235	0,0631	2,0	0,0236	0,0626	1107.04	440,01	10,10	2000	3363,00 A162.9A	2237,67
30	0,0243	0,0636	2,5	0,0242	0,0638	1204 16	466.01	16,18	2000	4343.23	2320.90
31	0.0251	0.0635	2.5	0.0250	0.0633	1239.07	489.77	16,18	2000	4797.57	2430.91
32	0.0249	0.0642	2.5	0.0248	0.0640	1289.06	499,96	16,18	2000	4999.22	2656.77
33	0,0263	0,065	2,5	0,0262	0,0648	1258,35	509,15	16,18	2000	5184,62	2475,60
34	0,0267	0,0652	2,5	0,0266	0,0650	1276,85	522,88	16,18	2000	5468,07	2531,59
35	0,026	0,0659	2,5	0,0259	0,0657	1349,58	532,46	16,18	2000	5670,29	2886,71
36	0,026	0,0659	2,5	0,0259	0,0657	1387,95	547,60	16,18	2000	5997,27	3053,17
37	0,026	0,0659	2,5	0,0259	0,0658	1426,32	562,74	19,61	2000	6333,46	3224,33
38	0,0262	0,0656	2,5	0,0261	0,0655	1453,52	580,52	19,61	2000	6740,08	3326,75
39	0,0271	0,0671	2,5	0,0270	0,0670	1442,07	582,41	19,61	2000	6784,14	3254,57
40	0,0259	0,0658	2,5	0,0258	0,0657	1547,42	609,09	19,61	2000	7419,79	3799,68
41	0,0278	0,0668	2,9	0,0277	0,0667	1612.47	614,91 C2E 40	19,61	2000	7062,35	3358,05
42	0,0278	0,0673	2,0	0,0278	0,0672	14.95.20	620,18	13,51	2000	7016,90	2275.90
44	0,023	1680,0 3830,0	2,5	0,0230	0,0030	1638.33	642.42	13,61	2000	8254.43	4267.63
45	0.0203	8830.0	2,5	0.0203	0.0687	1663.08	655.08	19,61	2000	8582 55	4387.31
46	0.0281	0.0711	2.5	0.0281	0.0710	1639,43	647.93	19.61	2000	8396.29	4255,93
47	0,0281	0,0719	2,5	0,0281	0,0718	1674,96	654.61	20.59	2100	8998.79	4691,71
48	0,0276	0,073	2,5	0,0276	0,0729	1741,49	658,43	20,59	2100	9104,01	5154,97
49	0,029	0,0727	2,5	0,0290	0,0726	1691,85	674,88	20,59	2100	9564,71	4735,67
50	0,0308	0,0757	2,5	0,0308	0,0756	1625,40	661,33	20,59	2100	9184,42	4323,48

T oss P: tempo di primo arrivo osservato onde P							
T oss SH: tempo di primo arrivo osservato onde S (S1+S2)							
T corr P: tempo di primo arrivo corretto onde P							
T corr SH: tempo di primo arrivo corretto onde S (S1+S2)							
V _P : velocità onde P							
V _{SH} : velocità media onde S							
γ: Peso di volume							
G: Modulo di deformazione a taglio							
Ev: Modulo di compressibilità	Ev: Modulo di compressibilità volumetrica						

Tabella 6 – Parametri prova Down-Hole.

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

In accordo con la stratigrafia del sondaggio S6 eseguito dalla Ditta *SONDEDILE S.r.l.*, l'elaborazione dei dati acquisiti ha consentito di ricostruire il seguente modello sismo-stratigrafico (**Figura 15**):

 il primo sismo-strato si individua fino alla profondità di circa 6 m dal piano campagna (p.c.), con valori di velocità medie delle onde P e delle onde S rispettivamente di 474,39 m/s e 150,44 m/s. Questo è ascrivibile ad un limo sabbioso argilloso;

- il secondo sismo-strato si individua fino alla profondità di circa 14 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 677,97 m/s e di 212,94 m/s. Il sismo-strato è associabile ad una sabbia limosa;
- il terzo sismo-strato si individua fino alla profondità di circa 23 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 907,93 m/s e di 327,89 m/s. Il sismo-strato è associabile ad una sabbia debolmente ghiaiosa a luoghi limoso argillosa;
- il quarto sismo-strato si individua fino alla profondità di circa 30 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 1116,98 m/s e di 428,68 m/s. Il sismostrato è associabile a sabbia limoso argillosa;
- il quinto sismo-strato fino alla profondità di 46 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 1428,91 m/s e 571,26 m/s. Quest'ultimo sismo-strato è associabile ad una sabbia limosa;
- 6. il sesto sismo-strato fino alla profondità di 50 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 1686,93 m/s e 658,96 m/s. Quest'ultimo sismo-strato è associabile ad una sabbia debolmente ghiaiosa a luoghi limoso argillosa.

Figura 19. Modello sismico-stratigrafico

	Profondità Letto(m)	Spessore (m)	V _{P media} (m/s)	V _{SHmedia} (m/s)	γ (kN/mc)	G _{medio} (Mpa)	Ev _{medio} (Mpa)
Strato 1 - LSA	6	6,00	474,39	150,44	14,71	377,37	340,44
Strato 2 - SL	14	8,00	677,97	212,94	17,65	875,34	728,88
Strato 3 - SG	23	9,00	907,93	327,89	16,18	2287,68	1439,47
Strato 4 - SLA	30	7,00	1116,98	428,68	16,67	3706,43	2025,92
Strato 5 - SL	46	16,00	1428,91	571,26	17,65	6595,37	3243,81
Strato 6 - SG	50	4,00	1686,93	658,96	18,63	9015,95	4709,57

Tabella 7 – Valori medi dei parametri relativi ai 6 sismo-strati individuati.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575QM GLOBE CERTIFICAZIONI CONTIFICAZIONI CONTIFICAZIONI

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs eq (in m/s), definita dall'espressione:

$$Vs, eq = H / \sum_{i=1}^{N} \left(\frac{h_i}{V_{s,i}} \right)$$
(1)

Dove:

H: profondità del **substrato sismico** (in m), definito come quella formazione, costituita da roccia o terreno molto rigido caratterizzata da Vs non inferiore a 800 m/s;

N: numero strati;

Vs,i: velocità delle onde di taglio nell'i-esimo strato (m/s);

hi: spessore dell'i-esimo strato (in m).

Per depositi con **profondità H del substrato superiore a 30 m**, la velocità equivalente delle onde di taglio è definita dal parametro Vs30 ottenuto ponendo H = 30 m nell'espressione (1) e considerando la proprietà degli strati di terreno fino a tale profondità.

È stato, quindi, determinato il parametro Vs, eq del sito per i primi 30 m di profondità dal piano campagna, definendo quindi la categoria di suolo nell'area investigata:

Vseq = 251,30 m/s

Categoria di suolo: C

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

2.3 SITO 3

2.3.1 MASW 3

La MASW numero 3 è ubicata alla fine di via Marciana Marina, lungo una sponda del fiume, come riportato in Figura 20, in cui è rappresentata anche la posizione dei 6 shots effettuati. Per eseguire l'indagine è stato utilizzato uno stendimento con lunghezza di 60 metri, composto da 24 geofoni distanziati di 2.5 metri. Al fine di rendere i geofoni solidali con il terreno, sono state impiegate delle apposite basette per l'utilizzo su asfalto.

Figura 20 – Ubicazione della MASW n.3 (a) e relativo stendimento (b).

Ai fini dell'elaborazione delle tracce acquisite, sono stati considerati i parametri riportati nella seguente tabella.

Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	50
Velocità minima di elaborazione [m/s]	120
Velocità massima di elaborazione [m/s]	1500

Tabella 8 – Parametri utilizzati per l'elaborazione dei dati

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Tracce acquisite relative ai 6 shots effettuati:

Figura 21 – Tracce acquisite relative ai 6 shots effettuati.

G.I.A. Consulting S.r.l. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma

Spettri di frequenza – velocità di fase.

Figura 22 – Spettri di velocità di fase – frequenza delle tracce acquisite.

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma

Risultati dell'inversione e modello sismo stratigrafico del sottosuolo:

Figura 23 – Risultati dell'approccio di inversione (in alto) e relativo modello sismo-stratigrafico del sottosuolo (in basso).

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Le elaborazioni effettuate hanno consentito di ricostruire il profilo di velocità delle onde di taglio (Vs) e il modello sismo-stratigrafico del sottosuolo ritenuto rappresentativo dell'area investigata. E' stato determinato il parametro Vs,eq del sito, definendo quindi la categoria di suolo nell'area investigata:

Vs30 e Vs,eq = **393 m/s e 289 m/s**

Categoria di suolo: E

Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C (Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s) o D (Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, caratterizzati da valori di velocità equivalente compresi tra 100 e 180 m/s), con profondità del substrato non superiore a 30 m.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

2.3.2 HVSR 3

Le indagini HVSR sono state svolte alla fine di via Marciana Marina, lungo una sponda del fiume, come indicato in **Figura 22.** Il TROMINO è stato posizionato al fine di determinare le frequenze di risonanza caratteristiche del sito, e lasciato acquisire in modo manuale per un tempo di 30 minuti.

Figura 24 – Ubicazione indagine HVSR 3.

Risultati

Instrument: TEB-0504/01-19

Data format: 32 bit

Full scale [mV]: 89

Start recording: 16/01/2021 07:45:09 End recording: 16/01/2021 08:15:09

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h30'00". Analyzed 80% trace (manual window selection)

Sampling rate: 512 Hz

Window size: 20 s

Smoothing type: Triangular window

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Smoothing: 10%

SINGLE COMPONENT SPECTRA

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 CLOBE UNI EN ISO 14001:2015 Cett. n°2575EM

Max. H/V at 1.25 ± 0.33 Hz (in the range 0.2 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]								
f ₀ > 1	0 / L _w	1.	.25 > 0.50	OK				
n _c (f ₀)	> 200	18	00.0 > 200	OK				
σ _A (f) < 2 for 0.5f ₀ <	$f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded	0 out of 61 tim	es OK				
σ _A (f) < 3 for 0.5f ₀ <	$f < 2f_0 \text{ if } f_0 < 0.5Hz$							
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]								
Exists f in [f ₀ /4,	$f_0] A_{H/V}(f) < A_0 / 2$	(0.656 Hz	OK				
Exists f ⁺ in [f ₀ , 4	$[a_0] A_{H/V}(f^+) < A_0 / 2$		1.781 Hz	OK				
A ₀	> 2		3.43 > 2	OK				
f _{peak} [A _{H/V} (f) ±	$\sigma_{A}(f)] = f_{0} \pm 5\%$	0.26	6775 < 0.05		NO			
σ _f <	0.33	469 < 0.125		NO				
σ _A (f ₀)	0.3	527 < 1.78	OK					
Lw	window length							
n _w	number of windows	used in the ana	alysis					
$n_c = L_w n_w f_0$	number of significar	nt cycles						
f	current frequency							
to	H/V peak frequency							
σf	standard deviation of	of H/V peak freq	luency					
$\epsilon(f_0)$	threshold value for t	the stability con	dition $\sigma_f < \varepsilon(f_0)$					
A ₀	H/V peak amplitude	at frequency fo						
Ан/v(†)	H/V curve amplitude	e at frequency f		10				
T -	frequency between	10/4 and 10 lor W	nicn A _{H/V} (I [∞]) < A	0/2				
T '	inequency between		$\operatorname{HCH} A_{H/V}(I^{-1}) \leq A_{$)/Z	(f)			
σA(I)	stanuaru ueviation (JI AH/V(I), GA(I) IS Lor divided	s the factor by W	men the mean AHA				
(5)	should be multiplied	of log Aug(f) our	NO					
OlogH/V(I)	threshold value for t	the stability con	dition $\sigma_{A}(f) < \Omega(f_{A})$)				
H(10)		held volues for	$\frac{1}{2}$)				
Fred range [H-1				10-20	> 2 0			
	0.2	0.2 - 0.3	0.3 - 1.0	1.0 - 2.0	0.05 fo			
$\Delta(f_0)$ [112]	3.0	2.5	20	1 78	1.58			
) 0.48	0.40	0.30	0.25	0.20			
) 0.40	0.40	0.30	0.20	0.20			

Dall'indagine di sismica passiva è stato possibile identificare la frequenza di risonanza del sito, corrispondente al picco di frequenza del rapporto spettrale H/V pari a 1.25 ± 0.33 Hz.

2.4 SITO 4

2.4.1 MASW 4

La MASW numero 4 è adiacente alla stazione di Val D'Ala, come riportato in **Figura 23**, in cui è rappresentata anche la posizione dei 6 shots effettuati. Per eseguire l'indagine è stato utilizzato uno stendimento con lunghezza di 60 metri, composto da 24 geofoni distanziati di 2.5 metri. Al fine di rendere i geofoni solidali con il terreno, sono state impiegate delle apposite basette per l'utilizzo su asfalto.

Figura 25 – Ubicazione della MASW n.4 (a) e relativo stendimento (b).

Ai fini dell'elaborazione delle tracce acquisite, sono stati considerati i parametri riportati nella seguente tabella.

Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	50
Velocità minima di elaborazione [m/s]	120
Velocità massima di elaborazione [m/s]	1500

Tabella 9- Parametri utilizzati per l'elaborazione dei dati

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Tracce acquisite relative ai 6 shots effettuati:

Figura 26 – Tracce acquisite relative ai 6 shots effettuati.

G.I.A. Consulting S.r.l. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575EM

Spettri di frequenza – velocità di fase.

Figura 27 – Spettri di velocità di fase – frequenza delle tracce acquisite.

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575QM

Risultati dell'inversione e modello sismo stratigrafico del sottosuolo:

Figura 28 – Risultati dell'approccio di inversione (in alto) e relativo modello sismo-stratigrafico del sottosuolo (in basso).

<u>G.I.A. Consulting S.r.I.</u> Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Le elaborazioni effettuate hanno consentito di ricostruire il profilo di velocità delle onde di taglio (Vs) e il modello sismo-stratigrafico del sottosuolo ritenuto rappresentativo dell'area investigata. E' stato determinato il parametro Vs,eq del sito, definendo quindi la categoria di suolo nell'area investigata:

Vs30 e Vs,eq = **254 m/s**

Categoria di suolo: C

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

2.4.2 HVSR 4

Le indagini HVSR sono state svolte in un'area adiacente alla stazione di Val D'Ala, come indicato in **Figura 27.** Il TROMINO è stato posizionato al fine di determinare le frequenze di risonanza caratteristiche del sito, e lasciato acquisire in modo manuale per un tempo di 30 minuti.

Figura 29 – Ubicazione indagine HVSR 4.

Risultati

Instrument: TEB-0504/01-19

Data format: 32 bit

Full scale [mV]: 89

Start recording: 16/01/2021 09:17:43 End recording: 16/01/2021 09:47:43

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

GPS data not available

Trace length: 0h30'00". Analyzed 48% trace (manual window selection)

Sampling rate: 512 Hz

Window size: 20 s

Smoothing type: Triangular window

Smoothing: 10%

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

HORIZONTAL TO VERTICAL SPECTRAL RATIO

H/V TIME HISTORY

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma

Max. H/V at 1.25 ± 0.79 Hz (in the range 0.2 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]								
f ₀ > 1	10 / L _w	1.	25 > 0.50	OK				
n _c (f ₀)	> 200	10	75.0 > 200	OK				
σ _A (f) < 2 for 0.5f ₀ <	$f < 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded	0 out of 61 tim	es OK				
σ _A (f) < 3 for 0.5f₀ <	f < 2f ₀ if f ₀ < 0.5Hz	2						
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]								
Exists f ⁻ in [f ₀ /4,	$f_0] A_{H/V}(f) < A_0 / 2$	().688 Hz	OK				
Exists f ⁺ in [f ₀ , 4	$f_0] A_{H/V}(f^+) < A_0 / 2$		1.844 Hz	OK				
A ₀	> 2		3.81 > 2	OK				
f _{peak} [A _{H/V} (f) ±	0.6	3187 < 0.05		NO				
σ _f <	0.78	984 < 0.125		NO				
σ _A (f ₀)	0.4	379 < 1.78	OK					
Lw	window length							
nw	number of windows	used in the ana	llysis					
$n_c = L_w n_w f_0$	number of significal	nt cycles						
f	current frequency							
to	H/V peak frequency	/						
σf	standard deviation	of H/V peak free	uency					
$\epsilon(f_0)$	threshold value for	the stability con	dition $\sigma_{\rm f} < \varepsilon(t_0)$					
A ₀	H/V peak amplitude	e at frequency fo						
Ан/∨(†)	H/V curve amplitud	e at frequency f		10				
1 - f +	frequency between	10/4 and 10 IOF W	nich A _{H/V} (Γ) ≤ A sich A _{H/V} (Γ+) < A	0/ <i>と</i> √2				
(f)	atopdard doviation	of $A_{10}(f) = (f)$	$\operatorname{Hot} A_{H/V}(I) > A_{H/V}(I)$)/Z high the mean A	(f) ourse			
σΑ(Ι)	stanuaru ueviation should be multiplied	or divided	sine lactor by w					
(f)	standard deviation		VA					
$O\log H/V(I)$	threshold value for	the stability con	dition $\sigma_{A}(f) < \Theta(f_{A})$)				
H(10)		shold values for	$\frac{1}{\sigma}$	/				
Fred range [H-]			0.5 - 1.0	10-20	> 2 0			
	0.2	0.2 = 0.3	0.5 - 1.0	1.0 - 2.0	0.05 fo			
$\frac{\mathcal{E}(10)\left[112\right]}{\Omega(f_0) \text{ for } \sigma_1(f_0)}$	3.0	25	20	1 78	1 58			
$\Theta(10)$ IOI $\sigma_A(10)$	> 0.49	2.5	2.0	0.25	0.20			
109 θ(10) 10Γ σlogH/V(10) 0.40	0.40	0.30	0.20	0.20			

Dall'indagine di sismica passiva è stato possibile identificare la frequenza di risonanza del sito, corrispondente al picco di frequenza del rapporto spettrale H/V pari a 1.25 ± 0.79 Hz.

2.5 SITO 5

2.5.1 MASW 5

La MASW numero 5 è ubicata in Via Fiesole, adiacente all'area ferroviaria, come riportato in Figura 30, in cui è rappresentata anche la posizione dei 6 shots effettuati. Per eseguire l'indagine è stato utilizzato uno stendimento con lunghezza di 60 metri, composto da 24 geofoni distanziati di 2.5 metri. Al fine di rendere i geofoni solidali con il terreno, sono state impiegate delle apposite basette per l'utilizzo su asfalto.

Figura 30 – Ubicazione della MASW n.5 (a) e relativo stendimento (b).

Ai fini dell'elaborazione delle tracce acquisite, sono stati considerati i parametri riportati nella seguente tabella.

Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	50
Velocità minima di elaborazione [m/s]	120
Velocità massima di elaborazione [m/s]	1500

Tabella 10 – Parametri utilizzati per l'elaborazione dei dati

Tracce acquisite relative ai 6 shots effettuati:

Figura 31 – Tracce acquisite relative ai 6 shots effettuati.

G.I.A. Consulting S.r.l. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma

Spettri di frequenza – velocità di fase.

Figura 32 – Spettri di velocità di fase – frequenza delle tracce acquisite.

<u>G.I.A. Consulting S.r.I.</u> Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Risultati dell'inversione e modello sismo stratigrafico del sottosuolo:

Figura 33 – Risultati dell'approccio di inversione (in alto) e relativo modello sismo-stratigrafico del sottosuolo (in basso).

<u>G.I.A. Consulting S.r.I.</u> Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Le elaborazioni effettuate hanno consentito di ricostruire il profilo di velocità delle onde di taglio (Vs) e il modello sismo-stratigrafico del sottosuolo ritenuto rappresentativo dell'area investigata. E' stato determinato il parametro Vs,eq del sito, definendo quindi la categoria di suolo nell'area investigata:

Vs30 e Vs,eq = 330 m/s - 280 m/s

Categoria di suolo: E

Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C (Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s) o D (Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, caratterizzati da valori di velocità equivalente compresi tra 100 e 180 m/s), con profondità del substrato non superiore a 30 m.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

2.5.2 HVSR 5

Le indagini HVSR sono state svolte in un'area adiacente alla stazione di Val D'Ala, come indicato in Figura 32. Il TROMINO è stato posizionato al fine di determinare le frequenze di risonanza caratteristiche del sito, e lasciato acquisire in modo manuale per un tempo di 30 minuti.

Figura 34 – Ubicazione indagine HVSR 4.

Risultati:

Instrument: TEB-0504/01-19 Data format: 32 bit Full scale [mV]: 89 Start recording: 12/03/2021 16:29:05 End recording: 12/03/2021 16:59:05 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available Trace length: 0h30'00". Analyzed 82% trace (manual window selection) Sampling rate: 512 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015

HORIZONTAL TO VERTICAL SPECTRAL RATIO

H/V TIME HISTORY

DIRECTIONAL H/V

SINGLE COMPONENT SPECTRA

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 3001:2015 CELOBE UNI EN ISO 14001:2015 CHILLIANEN CHILLIANEN

Max. H/V at 0.28 ± 0.01 Hz (in the range 0.2 - 20.0 Hz).

Criteria for a reliable H/V curve [All 3 should be fulfilled]								
f ₀ > 10	/ L _w	0.	28 > 0.50		NO			
n _c (f ₀) >	200	41	6.3 > 200	OK				
σ _A (f) < 2 for 0.5f ₀ < f	$< 2f_0 \text{ if } f_0 > 0.5Hz$	Exceeded	0 out of 14 time	es OK				
σ _A (f) < 3 for 0.5f ₀ < f	$< 2f_0 \text{ if } f_0 < 0.5 \text{Hz}$	2						
Criteria for a clear H/V peak [At least 5 out of 6 should be fulfilled]								
Exists f in [f ₀ /4, f ₀	$ A_{H/V}(f^{-}) < A_0 / 2$	().125 Hz	OK				
Exists f ⁺ in [f ₀ , 4f ₀]	$ A_{H/V}(f^+) < A_0 / 2$	().438 Hz	ОК				
A ₀ >	2		3.31 > 2	OK				
f _{peak} [A _{H/ν} (f) ± σ	$(f)] = f_0 \pm 5\%$	0.0	3417 < 0.05	OK				
σ _f < ε	(f ₀)	0.009	61 < 0.05625	OK				
σ _A (f ₀) <	θ(f ₀)	0.3	0.3403 < 2.5 OK					
$L_{w} \qquad V$ $n_{w} \qquad r$ $n_{c} = L_{w} n_{w} f_{0} \qquad r$ $f \qquad c$ $f_{0} \qquad H$ $\sigma_{f} \qquad s$ $\epsilon(f_{0}) \qquad t$ $A_{0} \qquad H$ $A_{H/V}(f) \qquad H$ $f^{-} \qquad f$ $f^{+} \qquad f$ $\sigma_{A}(f) \qquad s$ $\sigma_{\log H/V}(f) \qquad s$ $\theta(f_{0}) \qquad t$	< $\Theta(f_0)$ $0.3403 < 2.5$ OK window lengthnumber of windows used in the analysisnumber of significant cyclescurrent frequencyH/V peak frequencystandard deviation of H/V peak frequencythreshold value for the stability condition $\sigma_f < \varepsilon(f_0)$ H/V peak amplitude at frequency f_0 H/V curve amplitude at frequency ffrequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$ frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$ standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should be multiplied or dividedstandard deviation of log $A_{H/V}(f)$ curve							
~()	Thre	shold values for	σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0			
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀			
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58			
$\log \theta(f_0) \text{ for } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20			

Dall'indagine di sismica passiva è stato possibile identificare la frequenza di risonanza del sito, corrispondente al picco di frequenza del rapporto spettrale H/V pari a 0.28 Hz ± 0.01 Hz.

2.5.3 DOWNHOLE S7

L'indagine Down-Hole è stata svolta nel foro di sondaggio (S7), ubicato in Via Fiesole, adiacente all'area ferroviaria, come riportato in **Figura 35**, condizionato con tubo PVC ed opportunamente cementato, in modo da rendere solidale il tubo con il terreno circostante.

Figura 35 - Ubicazione del foro di sondaggio (a) ed esecuzione della prova Down-hole in sito (b)

L'energizzazione per la generazione delle onde di compressione (P) è stata realizzata con mazza di 8 Kg battente su piattello metallico. Per facilitare la generazione ed il rilievo delle onde trasversali con adeguata componente sul piano orizzontale (SH) si è utilizzato una traversina in legno, opportunamente ancorata (Dacia Duster 4X4). Sono state effettuate, quindi, per ogni stazionamento, due energizzazioni per le onde S (con inversione di fase), con piano di oscillazione prevalentemente orizzontale, e una verticale per la generazione prevalente delle onde P. Le energizzazioni sono state realizzate ad una distanza di 2.5 metri dal boccaforo.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Nella **Tabella 11** sono riportati i valori dei tempi d'arrivo relativi alle onde P e S, i tempi corretti sulla verticale (T corr. P e T corr. S), per tenere conto della distanza del punto di energizzazione dal foro di sondaggio, i valori delle velocità Vp e Vs relativi all'intervallo corrispondente ed infine i principali moduli elastici dinamici: il modulo di taglio (G) e il modulo di compressibilità volumetrica (Ev).

Profondità (m)	Toss P (s)	Toss SH (s)	Dist. Scoppio-Foro (m)	T _{oorr} P (s)	T _{oorr} SH (s)	V _P (m/s)	V _{SH} (m/s)	γ (kN/mc)	ρ (kg/mc)	G (Mpa)	Ev (Mpa)
1	0,0097	0,0156	2,5	0,0036	0,0058	277,59	172,60	14,71	1500	446,87	56,00
2	0,01	0,0133	2,5	0,0062	0,0083	320,16	240,72	14,71	1500	869,18	37,86
3	0,0104	0,0141	2,5	0,0080	0,0108	375,49	276,96	14,71	1500	1150,60	58,08
4	0,0117	0,0155	2,5	0,0099	0,0131	403,16	304,32	14,71	1500	1389,18	58,59
5	0,0132	0,0205	2,5	0,0118	0,0183	423,50	272,69	14,71	1500	1115,41	120,30
6	0.0133	0.0206	2.5	0.0123	0.0190	488.72	315.53	16.67	1700	1692.55	180.37
7	0.0135	0.0208	2,5	0.0127	0.0196	550.60	357.36	16.67	1700	2170.07	225.00
,	0,0135	0,0200	2,5	0,0127	0,0200	502.00	201,30	16,07	1700	2400.04	225,50
0	0,0133	0,0215	2,5	0,0133	0,0205	601.01	415.15	10,07	1700	2430,04	200,10
10	0,0137	0,0225	2,5	0,0132	0.0239	757.92	415,15	16,67	1700	2929,00	578.60
11	0.0136	0.0256	2,5	0.0132	0.0250	820.45	440.65	16.19	1650	3203 77	708.01
12	0.0138	0.0230	2,5	0.0135	0.0241	888.24	498.28	16,18	1650	4096 64	755 57
13	0,0137	0,0256	2,5	0,0135	0,0251	966,29	517,12	16,18	1650	4412,27	952,34
14	0,0149	0,0258	2,5	0,0147	0,0254	954,46	551,22	16,18	1650	5013,41	834,69
15	0,0156	0,0262	2,5	0,0154	0,0258	974,80	580,42	17,65	1800	6063,89	901,91
16	0,0159	0,0262	2,5	0,0157	0,0259	1018,50	618,10	17,65	1800	6876,78	950,31
17	0,016	0,0269	2,5	0,0158	0,0266	1073,93	638,77	17,65	1800	7344,43	1096,72
18	0,0175	0,0286	2,5	0,0173	0,0283	1038,44	635,41	17,65	1800	7267,47	972,07
19	0,0182	0,0299	2,5	0,0180	0,0296	1052,95	640,93	17,65	1800	7394,21	1009,79
20	0,0188	0,0301	2,5	0,0187	0,0299	10/2,11	609,62	17,65	1800	80/1,10	992,80
21	0.0203	0,0305	2,5	0,0204	0.0323	1051,02	681.28	19,01	2000	9282.84	985.64
23	0,0228	0,0327	2,5	0,0227	0,0325	1014,71	707,51	19,61	2000	10011,32	724,45
24	0,023	0,0331	2,5	0,0229	0,0329	1049,12	729,00	17,65	1800	9565,90	705,74
25	0,024	0,0335	2,5	0,0239	0,0333	1046,86	749,99	17,65	1800	10124,75	622,69
26	0,0241	0,0355	2,5	0,0240	0,0353	1083,81	735,77	17,65	1800	9744,50	815,11
27	0,0259	0,0352	2,5	0,0258	0,0351	1046,93	770,33	17,65	1800	10681,25	548,75
29	0.027	0,0365	2,5	0,0269	0.0365	1078.06	795,29	16,18	1650	10435,98	526,18
30	0,0277	0,0373	2,5	0,0276	0,0372	1086,79	807,08	16,18	1650	10747,67	515,80
31	0,0282	0,0386	2,5	0,0281	0,0385	1102,86	805,72	16,18	1650	10711,45	578,70
32	0,0287	0,0382	2,5	0,0286	0,0381	1118,38	840,25	16,18	1650	11649,30	510,54
33	0,03	0,0383	2,5	0,0299	0,0382	1103,15	864,09	16,18	1650	12319,69	365,33
35	0.0313	0,0399	2,5	0,0314	0,0398	1121 06	837 45	10,18	1800	12045,80	520,58
36	0,0315	0,0419	2,5	0,0314	0,0418	1145,61	861,26	17,65	1800	13351,77	582,12
37	0,0329	0,0424	2,5	0,0328	0,0423	1127,18	874,63	17,65	1800	13769,64	451,03
38	0,0331	0,042	2,5	0,0330	0,0419	1150,52	906,72	17,65	1800	14798,47	409,52
39	0,0337	0,0444	2,5	0,0336	0,0443	1159,65	880,18	17,65	1800	13944,94	561,27
40	0,0353	0,044	2,5	0,0350	0,0439	1163,63	910,86	17,65	1800	14934,14	554,59
42	0.035	0.0476	2,5	0.0349	0.0475	1202.12	883.91	18,14	1850	14454.15	746.22
43	0,0359	0,0479	2,5	0,0358	0,0478	1199,79	899,22	18,14	1850	14959,02	668,55
44	0,0358	0,0484	2,5	0,0357	0,0483	1231,03	910,56	18,14	1850	15338,61	758,42
45	0,0363	0,0489	2,5	0,0362	0,0488	1241,58	921,66	18,14	1850	15715,11	756,47
46	0,0373	0,0513	2,5	0,0372	0,0512	1235,06	898,01	18,14	1850	14918,79	832,79
47	0.037	0.052	2,5	0,0369	0.0519	1233,34	924 33	17,05	1800	15378.88	987.06
49	0,038	0,0519	2,5	0,0380	0,0518	1291,15	945,35	17,65	1800	16086,40	855,87
50	0,0391	0,0531	2,5	0,0391	0,0530	1280,37	942,80	17,65	1800	15999,55	817,55
T oss P: t T oss SH T corr P:	empo o : tempo tempo	di primo a o di primo di primo	nrivo osservato on arrivo osservato o arrivo corretto onde	de P nde S (S1 P	+S2)						
T corr SH	I: temp	o di primo	o arrivo corretto ono	de S (S1+	S2)						
V _P : velocit	à onde	P									
Vau: veloc	ità mer	lia onde ^o	3								
v: Peso di	volume	e									

Tabella 11 – Parametri prova Down-Hole.

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

G: Modulo di deformazione a taglio Ev: Modulo di compressibilità volumetrica

In accordo con la stratigrafia del sondaggio S7 eseguito dalla Ditta *SONDEDILE S.r.l.*, l'elaborazione dei dati acquisiti ha consentito di ricostruire il seguente modello sismo-stratigrafico (**Figura 15**):

- il primo sismo-strato si individua fino alla profondità di circa 5.23 m dal piano campagna (p.c.), con valori di velocità medie delle onde P e delle onde S rispettivamente di 359.98 m/s e 253.46 m/s. Questo è ascrivibile al terreno di riporto;
- il secondo sismo-strato si individua fino alla profondità di circa 10 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 616.41 m/s e di 377.95 m/s. Il sismo-strato è associabile ad argilla limosa riscontrata;
- il terzo sismo-strato si individua fino alla profondità di circa 14 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 909.61 m/s e di 501.82 m/s. Il sismo-strato è associabile a limo sabbioso riscontrato;
- il quarto sismo-strato si individua fino alla profondità di circa 20.25 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 1038.46 m/s e di 630.54 m/s. Il sismo-strato è associabile a ghiaia limosa sabbiosa riscontrata;
- il quinto sismo-strato si individua fino alla profondità di circa 23 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 1033.57 m/s e di 694.06 m/s. Il sismo-strato è associabile a sabbia limosa riscontrata;
- il sesto sismo-strato si individua fino alla profondità di circa 28 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 1057.51 m/s e di 751.05 m/s. Il sismo-strato è associabile a ghiaia limosa sabbiosa riscontrata;
- il settimo sismo-strato si individua fino alla profondità di circa 34 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 1095.25 m/s e di 827.81 m/s. Il sismo-strato è associabile a limo sabbioso argilloso riscontrato;
- l'ottavo sismo-strato si individua fino alla profondità di circa 40 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 1148.88 m/s e di 878.52 m/s. Il sismo-strato è associabile a ghiaia sabbiosa limosa riscontrata;
- il nono sismo-strato si individua fino alla profondità di circa 46 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 1212.20 m/s e di 905.73 m/s. Il sismo-strato è associabile ad argilla limosa;

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

10. infine, si individua il decimo sismo-strato fino alla profondità di 50 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 1276.48 m/s e 937.49 m/s. Quest'ultimo sismo-strato è associabile a ghiaia limoso sabbiosa.

Figura 36 - Modello sismico-stratigrafico

	Profondità (m)	V _{P media} (m/s)	V _{SHmedia} (m/s)	γ (kN/mc)	Gmedio (Mpa)	Ev _{medio} (Mpa)
Strato 1 - TR	5,00	359,98	253,46	14,71	994,25	66,17
Strato 2 - M	10,00	616,41	377,95	16,67	2453,64	334,12
Strato 3 - MS	14,00	909,61	501,82	16,18	4181,52	812,65
Strato 4 - GMS	20,00	1038,46	630,54	17,65	7169,65	987,27
Strato 5 - SM	23,00	1033,57	694,06	19,61	9636,62	852,16
Strato 6 - GMS	28,00	1057,51	751,05	17,65	10158,69	658,85
Strato 7 - MSG	34,00	1095,25	827,81	16,18	11318,32	470,52
Strato 8 - GMS	40,00	1148,88	878,52	17,65	13903,80	522,93
Strato 9 - M	46,00	1212,20	905,73	18,14	15179,63	695,85
Strato 10 - GMS	50,00	1276,48	937,49	17,65	15885,75	815,91

Tabella 12 – Valori medi dei parametri relativi ai 10 sismo-strati individuati.

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs eq (in m/s), definita dall'espressione:

$$Vs, eq = H / \sum_{i=1}^{N} \left(\frac{h_i}{V_{s,i}}\right) \tag{1}$$

Dove:

H: profondità del **substrato sismico** (in m), definito come quella formazione, costituita da roccia o terreno molto rigido caratterizzata da Vs non inferiore a 800 m/s;

N: numero strati;

Vs,i: velocità delle onde di taglio nell'i-esimo strato (m/s);

hi: spessore dell'i-esimo strato (in m).

Per depositi con **profondità H del substrato superiore a 30 m**, la velocità equivalente delle onde di taglio è definita dal parametro Vs30 ottenuto ponendo H = 30 m nell'espressione (1) e considerando la proprietà degli strati di terreno fino a tale profondità.

È stato, quindi, determinato il parametro Vs, eq del sito per i primi 30 m di profondità dal piano campagna, definendo quindi la categoria di suolo nell'area investigata:

Vseq= 290.21 m/s

Categoria di suolo: C

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

2.6 SITO 6

2.6.1 DOWNHOLE S11

L'indagine Down-Hole è stata svolta nel foro di sondaggio (S11), ubicato nell'area sottostante il Viadotto Littorio, come riportato in **Figura 37**, condizionato con tubo PVC ed opportunamente cementato, in modo da rendere solidale il tubo con il terreno circostante.

Figura 37. Ubicazione del foro di sondaggio (a) ed esecuzione della prova Down-hole in sito (b)

L'energizzazione per la generazione delle onde di compressione (P) è stata realizzata con mazza di 8 Kg battente su piattello metallico. Per facilitare la generazione ed il rilievo delle onde trasversali con adeguata componente sul piano orizzontale (SH) si è utilizzato una traversina in legno, opportunamente ancorata (Dacia Duster 4X4). Sono state effettuate, quindi, per ogni stazionamento, due energizzazioni per le onde S (con inversione di fase), con piano di oscillazione prevalentemente orizzontale, e una verticale per la generazione prevalente delle onde P. Le energizzazioni sono state realizzate ad una distanza di 2.5 metri dal boccaforo. Nella **Tabella 13** sono riportati i valori dei tempi d'arrivo relativi alle onde P e S, i tempi corretti sulla verticale (T corr. P e T corr. S), per tenere conto della distanza del punto di energizzazione dal foro di sondaggio, i valori delle velocità Vp e Vs relativi all'intervallo corrispondente ed infine i principali moduli elastici dinamici: il modulo di taglio (G) e il modulo di compressibilità volumetrica (Ev).

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575QM OBE UNI EN ISO 14001:2015 Cert n°2575EM

Profondità (m)	T _{oss} P (s)	T _{oss} SH (s)	Dist. Scoppio-Foro (m)	T _{oorr} P (s)	T _{oorr} SH (s)	V _P (m/s)	V _{sH} (m/s)	γ (kN/mc)	ρ (kg/mc)	G (Mpa)	Ev (Mpa)
1	0,0104	0,0228	2,5	0,0039	0,0085	258,90	118,10	14,71	1500	209,20	72,65
2	0,0112	0,0167	2,5	0,0070	0,0104	285,85	191,71	14,71	1500	551,29	49,06
3	0.0121	0.0187	25	0.0093	0.0144	322 74	208.83	14 71	1500	654 15	69.02
4	0.012	0.0225	2,5	0.0110	0.0191	262.95	200,64	16.67	1700	747.16	124.20
4	0,015	0,0225	2,5	0,0110	0,0151	302,85	209,04	10,07	1700	747,10	124,20
5	0,0136	0,0251	2,5	0,0122	0,0225	411,04	222,72	16,67	1700	843,24	174,79
6	0,0137	0,0277	2,5	0,0126	0,0256	474,45	234,66	16,67	1700	936,09	257,87
7	0,0149	0,0296	2,5	0,0140	0,0279	498,86	251,12	16,67	1700	1072,01	280,13
8	0,0156	0,0317	2,5	0,0149	0,0303	537,28	264,40	16,67	1700	1188,44	332,28
9	0,0141	0,0343	2,5	0,0136	0,0330	662,47	272,33	16,67	1700	1260,74	577,97
10	0,0156	0,0357	2,5	0,0151	0,0346	660,75	288,73	16,67	1700	1417,23	553,25
11	0,0168	0,0379	2,5	0,0164	0,0370	671,46	297,64	16,67	1700	1506,01	565,66
12	0,0169	0,0385	2,5	0,0165	0,0377	725,30	318,38	16,67	1700	1723,22	664,55
13	0,018	0,0412	2,5	0,0177	0,0405	735,46	321,32	16,67	1700	1755,14	685,50
14	0,0178	0,041	2,5	0,0175	0,0404	798,96	346,86	16,67	1700	2045,36	812,45
15	0,0189	0,0433	2,5	0,0186	0,0427	804,60	351,20	16,67	1700	2096,79	820,97
16	0,02	0,0424	2,5	0,0198	0,0419	809,71	381,94	16,67	1700	2479,89	783,91
17	0,0202	0,0463	2,5	0,0200	0,0458	850,64	371,12	16,67	1700	2341,41	917,90
18	0,0199	0,0469	2,5	0,0197	0,0465	913,21	387,48	16,18	1650	2477,31	1045,70
19	0,0219	0,0465	2,5	0,0217	0,0461	875,06	412,12	16,18	1650	2802,46	889,79
20	0,0236	0,0489	2,5	0,0234	0,0485	854,05	412,18	16,18	1650	2803,24	829,76
21	0,0227	0,0488	2,5	0,0225	0,0485	931,64	433,37	16,18	1650	3098,81	1018,96
22	0,0232	0,0482	2,5	0,0231	0,0479	954,38	459,37	16,18	1650	3481,83	1038,64
23	0,0241	0,0488	2,5	0,0240	0,0485	959,98	474,09	16,18	1650	3708,52	1026,10
24	0,0258	0,0521	2,5	0,0257	0,0518	935,27	463,15	16,18	1650	3539,31	971,38
25	0,0262	0,05	2,5	0,0261	0,0498	958,96	502,49	16,18	1650	4166,25	961,84
26	0,0268	0,0513	2,5	0,0267	0,0511	974,62	509,16	18,63	1900	4925,64	1148,04
27	0,0283	0,0509	2,5	0,0282	0,0507	958,14	532,72	18,63	1900	5392,04	1025,34
28	0,0287	0,0535	2,5	0,0286	0,0533	979,49	525,45	18,63	1900	5245,79	1123,43
29	0,0292	0,0544	2,5	0,0291	0,0542	996,83	535,07	18,63	1900	5439,61	1162,71
30	0,0309	0,0576	2,5	0,0308	0,0574	974,24	522,64	18,63	1900	5189,87	1111,39
31	0,0294	0,0568	2,5	0,0293	0,0566	1057,85	547,55	18,63	1900	5696,34	1366,66
32	0,0304	0,0587	2,5	0,0303	0,0585	1055,84	546,81	18,63	1900	5680,94	1360,65
33	0,0316	0,0584	2,5	0,0315	0,0582	1047,30	566,69	18,63	1900	6101,56	1270,43
34	0,0316	0,0582	2,5	0,0315	0,0580	1078,85	585,77	18,63	1900	6519,39	1342,21
35	0,0319	0,0603	2,5	0,0318	0,0601	1099,97	581,91	18,63	1900	6433,77	1441,06
36	0,0329	0,0594	2,5	0,0328	0,0593	1096,86	607,52	18,63	1900	7012,54	1350,89
37	0,0341	0,061	2,5	0,0340	0,0609	1087,52	607,94	18,63	1900	7022,24	1310,82
38	0,0352	0,0646	2,5	0,0351	0,0645	1081,88	589,51	17,65	1800	6255,33	1272,79
39	0,0352	0,0644	2,5	0,0351	0,0643	1110,23	606,83	17,65	1800	6628,43	1334,90
40	0,0357	0,0639	2,5	0,0356	0,0638	1122,63	627,20	17,65	1800	7080,83	1324,44
41	0,0358	0,0662	2,5	0,0357	0,0661	1147,38	620,49	17,65	1800	6930,04	1445,65
42	0,0357	0,0648	2,5	0,0356	0,0647	1178,55	649,30	17,65	1800	7588,52	1488,37
43	0,0384	0,066	2,5	0,0383	0,0659	1121,68	652,62	17,65	1800	7666,32	1242,53
44	0,0386	0,0673	2,5	0,0385	0,0672	1141,73	654,84	17,65	1800	7718,76	1317,24
45	0,0375	0,0703	2,5	0,0374	0,0702	1201,85	641,10	17,65	1800	7398,19	1613,58
46	0,038	0,0727	2,5	0,0379	0,0726	1212,31	633,67	17,65	1800	/22/,/0	1681,//
4/	0,038	0,07	2,5	0,0379	0,0699	1238,59	6/2,38	17,05	1800	8137,65	1520.40
48	0,0390	0,0700	2,5	0,0395	0,0705	1215,70	671.10	17,05	1800	8343,00	1539,40
49 Tece Di temara	di prince arri	0,0/31	2,5	0,0407	0,0750	1202,54	6/1,19	17,65	1800	8108,84	1521,82
To so F, tempo di primo attivo osservato ordo F											
1 055 Sri, tempo u printo atrivo osservato onde 5 (51+52)											
T corr P: tempo di primo arrivo corretto onde P											
r con an temp		anvo conelli									
Vp. velocita onde P											
V _{SH} : velocità me											
y: Peso di volum	e										
G: Modulo di defe	ormazione a	taglio									

Tabella 13 – Parametri prova Down-Hole.

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it

Ev: Modulo di compressibilità volumetrica

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma

In accordo con la stratigrafia del sondaggio S7 eseguito dalla Ditta *SONDEDILE S.r.l.*, l'elaborazione dei dati acquisiti ha consentito di ricostruire il seguente modello sismo-stratigrafico (**Figura 15**):

- il primo sismo-strato si individua fino alla profondità di circa 3 m dal piano campagna (p.c.), con valori di velocità medie delle onde P e delle onde S rispettivamente di 289.16 m/s e 172.88 m/s. Questo è ascrivibile al terreno di riporto;
- il secondo sismo-strato si individua fino alla profondità di circa 17 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 643.13 m/s e di 295.15 m/s. Il sismo-strato è associabile ad argilla limosa riscontrata;
- il terzo sismo-strato si individua fino alla profondità di circa 25 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 922.82 m/s e di 443.03 m/s. Il sismo-strato è associabile a limo sabbioso argilloso riscontrato;
- il quarto sismo-strato si individua fino alla profondità di circa 37 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 1033.96 m/s e di 555.77 m/s. Il sismostrato è associabile a ghiaia poligenica riscontrata;
- infine, si individua il quinto sismo-strato fino alla profondità di 49 m dal p.c., con valori di velocità medie delle onde P e delle onde S rispettivamente di 1164.43 m/s e 641.66 m/s. Quest'ultimo sismo-strato è associabile ad argilla limosa riscontrata.

Figura 38. Modello sismico-stratigrafico

	Profondità (m)	V _{P media} (m/s)	V _{SHmedia} (m/s)	Г (kN/mc)	ρ _{media} (kg/mc)	G _{medio} (Mpa)	Ev _{medio} (Mpa)
Strato 1 -TR	3,00	289,16	172,88	14,71	1500,00	471,55	63,58
Strato 2 - M	17,00	643,13	295,15	16,67	1700,00	1529,48	539,39
Strato 3 - MSG	25,00	922,82	443,03	16,18	1650,00	3259,72	972,77
Strato 4 - G	37,00	1033,96	555,77	18,63	1900,00	5888,31	1251,14
Strato 5 - M	49,00	1164,43	641,66	17,65	1800,00	7423,63	1454,91

Tabella 14 – Valori medi dei parametri relativi ai 5 sismo-strati individuati.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs eq (in m/s), definita dall'espressione:

$$Vs, eq = H / \sum_{i=1}^{N} \left(\frac{h_i}{V_{s,i}} \right)$$
(1)

Dove:

G.I.A. Consulting S.r.l. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575QM GLOBE UNI EN ISO 14001:2015 Cert. n°2575EM

H: profondità del **substrato sismico** (in m), definito come quella formazione, costituita da roccia o terreno molto rigido caratterizzata da Vs non inferiore a 800 m/s;

N: numero strati;

Vs,i: velocità delle onde di taglio nell'i-esimo strato (m/s);

hi: spessore dell'i-esimo strato (in m).

Per depositi con **profondità H del substrato superiore a 30 m**, la velocità equivalente delle onde di taglio è definita dal parametro Vs30 ottenuto ponendo H = 30 m nell'espressione (1) e considerando la proprietà degli strati di terreno fino a tale profondità.

È stato, quindi, determinato il parametro Vs, eq del sito per i primi 30 m di profondità dal piano campagna, definendo quindi la categoria di suolo nell'area investigata:

Vseq = 314.95 m/s

Categoria di suolo: C

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s

CONCLUSIONI

Riassumendo quanto esposto, le indagini eseguite hanno consentito di determinare la stratigrafia sismica in termini di velocità delle onde di taglio (Vs) e di conseguenza alla categoria di suolo e alla frequenza f0 e dello spettro H/V nei termini di caratteristiche di sito.

Il piano di indagini eseguito, in merito all'oggetto del presente report, è di seguito elencato:

SITO 1

- MASW: Vs30 e Vs,eq = **343,00 m/s**
- DOWNHOLE S1: Vs30 e Vs,eq = 352,42 m/s

Categoria di suolo: C

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

HVSR:
 f0 = 1.31 ± 0.19 Hz

SITO 2

- MASW: Vs30 e Vs,eq = **226,00 m/s**
- DOWNHOLE S6: Vs30 e Vs,eq = 251,30 m/s

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575QM UNI EN ISO 14001:2015 Cert. n°2575EM

Categoria di suolo: C

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

HVSR:
 f0 = 0.22 ± 0.39 Hz

SITO 3

• MASW: Vs30 e Vs,eq = **393 m/s e 289 m/s**

Categoria di suolo: E

Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C (Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s) o D (Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, caratterizzati da valori di velocità equivalente compresi tra 100 e 180 m/s), con profondità del substrato non superiore a 30 m.

• HVSR: f0 = 1.25 ± 0.33 Hz

SITO 4

• MASW: Vs30 e Vs,eq = **254,00 m/s**

Categoria di suolo: C

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento

G.I.A. Consulting S.r.I. Viale degli Astronauti, 8 - 80131 Napoli www.giaconsulting.it TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 Cert. n°2575CM UNI EN ISO 14001:2015 Cert. n°2575EM

delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

• HVSR:

 $\mathrm{f0}=1.25\pm0.79~\mathrm{Hz}$

SITO 5:

- MASW:
 Vs30 e Vs,eq = 330 m/s 280 m/s
- DOWNHOLE S7: Vs30 e Vs,eq = 290.21 m/s

Categoria di suolo: E

Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C (Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s) o D (Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, caratterizzati da valori di velocità equivalente compresi tra 100 e 180 m/s), con profondità del substrato non superiore a 30 m.

• HVSR: f0 = 0.28 ± 0.01 Hz

SITO 6:

DOWNHOLE S11:
 Vs30 e Vs,eq = 314.95 m/s

Categoria di suolo: C

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

TEL/FAX +39 081 038 3761 P.IVA: 07456341218 - REA: NA-885359 EMAIL: amministrazione@giaconsulting.it PEC: giaconsulting@pec.giaconsulting.it

Sistema di gestione a norma UNI EN ISO 9001:2015 CELOBE UNI EN ISO 14001:2015 Cert. n°2575EM